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Key Points: 

• Stochastic forcing affects tropical Atlantic SST’s seasonal predictability 

• Much of this stochastic forcing is due to the North Atlantic Oscillation (NAO) 

• The NAO’s effect on evolution of north tropical Atlantic SST is quantified 

Abstract 

The North Atlantic Oscillation (NAO) is a rapidly decorrelating process that strongly 

affects the climate over the Atlantic and the surrounding continents. Although the NAO itself is 

basically unpredictable on seasonal timescales using statistical methods, NAO forcing is here 

shown to significantly affect sea surface temperatures (SSTs) evolving on those timescales. 

Results using Linear Inverse Modeling (LIM) imply that the NAO index and its convolution with 

deterministic SST dynamics account for nearly half the unpredictable component of north 

tropical Atlantic SST at lead times greater than nine months; adding this component to hindcasts 

at a lead of 48 weeks increases correlation with north tropical Atlantic SST from about 0.4 to 

about 0.6.  Rapid fluctuations during boreal winter and spring, when the NAO is strongest, affect 

SST predictability throughout the entire year. 

Index Terms 

Ocean/atmosphere interactions, Stochastic processes, Seasonal Predictability 
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1. Introduction 

Seasonal climate predictability in the Atlantic-rim nations is strongly influenced by 

tropical Atlantic variability [Hastenrath, 1984; Enfield, 1996; Nobre and Shukla, 1996; Polo et 

al., 2008; Kushnir et al., 2010].  Thus, improved forecasts of sea surface temperature (SST) in 

this region [Stockdale et al., 2006; Kushnir et al., 2006], particularly in the north tropical 

Atlantic (NTA) where hurricanes form [Goldenberg and Shapiro, 1996; Elsner et al., 2013], may 

improve predictability over land on seasonal scales. 

Air-sea interactions influencing monthly NTA SSTs have been shown to involve several 

remote, possibly inter-related phenomena such as El Niño [Enfield and Mayer, 1997; Saravanan 

and Chang, 2000; Czaja et al., 2002], the Pacific-North American (PNA) pattern and the North 

Atlantic Oscillation (NAO). Monthly variations in NTA SSTs are influenced in part by the effect 

on Atlantic trade winds of Rossby-wave propagation associated with these teleconnections [Lee 

et al. 2008].  This study is concerned with a subset of these influences, i.e., sub-monthly forcing 

of NTA SSTs by the NAO. 

The NAO has a short decorrelation time [Wu and Liu ,2002; Kushnir et al., 2006; 

Smirnov and Vimont, 2013], much shorter than that of SST anomalies in NTA (Fig. 1a).  

Synoptic-scale wave breaking associated with both the origin and decay of the NAO [Feldstein, 

2007; Benedict et al., 2004; Franzke et al., 2004] is a strongly nonlinear mechanism operating on 

climatically short timescales of about 10 days [Feldstein, 2000].  However, when a dynamical 

system comprises coupled processes evolving on separate timescales, the slow process (like 

SSTs) can “see” a broadband, rapidly decorrelating process (like the NAO) as stochastic forcing.   

The idea that rapidly varying atmospheric variability may act as stochastic forcing of 

slow oceanic processes has been extensively discussed in the climate literature, beginning with 



 4 

articles by Hasselmann [1976] and Frankignoul and Hasselmann [1977].  The theoretical 

justification for this idea is the dynamical Central Limit Theorem [Khasminskii, 1966; 

Papanicolaou and Kohler, 1974; Gardiner, 1984], which requires that a system be forced by a 

combination of strong but weakly correlated influences operating on much faster timescales than 

the forced system.  Stochastic forcing of Atlantic SST has been discussed previously in a 

landmark paper by Frankignoul et al. [1998], who used a one-dimensional mixed layer model to 

investigate the stochastic forcing of SST by local air-sea fluxes in a region of the Atlantic 

considerably northward of our interest.  However, a one-dimensional model is not justified in the 

NTA region, where mean surface currents can be considerable. 

The effects of stochastic atmospheric forcing on SST are manifold: 1) Whether or not 

self-sustaining oceanic variability exists, stochastic forcing modifies the internal dynamical 

behavior of the oceanic system. Furthermore, when self-sustaining oceanic variability does not 

obtain, stochastic forcing maintains the system.  2) The large spatial scale of stochastic forcing 

related to the NAO can generate correlations between SSTs at locations that are not directly 

connected by currents.  3) An unpredictable component of SST is generated. (Here, we mean 

"unpredictable" in a pathwise sense; probabilistic forecasts of this component are not precluded.) 

This article investigates this last effect, concentrating on SSTs in the north tropical Atlantic 

(SSTNTA) on seasonal timescales and employing statistical products at two different temporal 

resolutions. 

We identify the fraction of that unpredictable component related to the rapidly varying 

NAO in the context of the best-fit linear model of tropical SSTs.  Such Linear Inverse Models 

(LIMs: c.f. Penland and Sardeshmukh [1995]) are competitive with state of the art GCMs [Saha 

et al., 2006].  First we use LIM to derive the linear dynamical description of SST anomalies 
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(SSTA) in the global tropical strip from seasonally averaged analyses.  Although this linear 

description is based solely on SST, it implicitly includes other processes that may be 

parameterized by SST.  Thus, the deterministic part of this model includes dynamics occurring as 

a result of the persistent El Niño phenomenon [Penland and Matrosova, 1998].  Next, we use 

those results to estimate time series of the corresponding stochastic forcing from weekly SSTA.  

We show that the SSTA in the NTA region (SSTANTA) include a substantial unpredictable 

component due to the NAO at lead times approaching a year.  We further show that the NAO 

cannot be used in isolation to estimate this component, but must be convolved with the SST 

dynamics. 

2. Determining the linear dynamics stochastic forcing in the tropical strip  

We want to investigate how stochastic forcing affects the predictability of seasonal SST.  

How is the stochastic forcing time series estimated?  Let X represent a low-resolution time series 

of SSTAs, such as three-month averages, and x a more finely resolved SSTA time series, such as 

weekly averages.  Here “anomalies” are created by subtracting the average of each point in the 

annual cycle from the full series (the “anomaly method” [Fuenzalida and Rosenblüth, 1986], e.g. 

subtracting the DJF-average SST from each DJF SST); both X and x are therefore centered about 

0.  We use weekly averaged values for the finely resolved data because their SST values are as 

close as possible to "instantaneous" while providing good geographical coverage and reasonable 

instrumentation error. These weekly data allow us to sample phenomena unresolved on seasonal 

timescales and to verify that the timescales of the rapid dynamics are appropriately short, similar 

to NAO timescales. 

Separating linear and nonlinear contributions to the tendency equation for the ith 

component of x, we write 
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dxi
dt

= Lij
j
∑ x j +Ni (x,t) , (1) 

where L is a linear operator representing slow dynamics, defined here as monthly to seasonal 

timescales and longer, and N represents rapidly varying dynamics.  Penland and Matrosova 

[1998] showed that the effect of El Niño on NTA forecasts is contained in L.  If the decorrelation 

timescales of N(x,t) are shorter than three months, then applying a three-month mean to equation 

(1) combines decorrelated values of N(x,t), which, by the Central Limit Theorem, results in a 

term that is approximately Gaussian white noise, denoted ξ(t):  

   

dXi

dt
= Lij

j
∑ Xj +ξi (t)

. (2) 

For our slowly varying SSTs, we use monthly Extended Reconstructed SST (ERSST [Smith et 

al., 2008]) data from 1950-2000.  We estimate the constant L from the statistics of X using 

equation (2) as an ansatz; see the supplementary material for details.  Our task is now to exploit 

the equivalence of ξ(t) in equation (2) and N(t) in equation (1), and investigate the NAO 

contribution to this forcing. 

Given L (with units adjusted appropriately) and dropping explicit dependence of N on x, 

the quantity N(t) can be estimated from weekly SSTA via a centered difference approximation to 

equation (1): 

  
  
N(t)≈ x(t+δ)−x(t−δ)

2δ
−Lx(t)  (3) 
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with δ = 1 wk.  The centered difference emulates calculus appropriate for continuous systems 

with noise that is only approximately white [Gardiner, 1984; Kloeden and Platen, 1992] (see 

also supplementary material).  For our rapidly varying SSTs, we rely on the Optimal Interpolated 

SST data set (OISST [Reynolds et al., 2002]) because there is no sub-monthly version of ERSST.  

Our comparison of monthly OISST and ERSST (see supplemental material) showed the two time 

series were statistically indistinguishable during the 22-year period of overlap. 

We continued investigating the stochastic forcing of coarse-grained SSTNTA from ERSST 

using weekly OISST as follows.  Weekly OISST anomalies in the period 1990-2012 (1186 

maps) were consolidated onto a 4° x 10° latitude by longitude grid, projected onto the leading 20 

ERSST EOFs, and detrended by removing the ERSST trends from the leading two PCs.  Then, 

we estimated N(t) as described in equation (3).  We denote the resulting stochastic forcing in the 

NTA region as NNTA(t). 

3. Quantifying that “unpredictable” SST component 

To quantify the unpredictable component of tropical SST, we integrate equation (1), 

yielding 

 x(t+τ)= exp(Lτ)x(t)+ exp L τ− s[ ]( )
0

τ

∫ N t+ s( )ds . (4) 

The first term on the right hand side is the LIM forecast (or, in our case, the “hindcast”) of x(t+τ) 

based on the slow dynamics encapsulated in L.  The second term is the unpredictable (on 

seasonal timescales) component of SST generated between time t and t + τ  and comprises not 

only the effect of local stochastic forcing, but also the redistribution of stochastically induced 

variability by deterministic dynamics. 
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4. NAO’s contribution to stochastic forcing 

The NAO index we used was generated at NOAA/ESRL/Physical Science Division by 

spatially smoothing NCAR/NCEP reanalyses of 500 hPa geopotential heights to emphasize large 

scales, averaging them in two domains (55°N - 70°N, 70°W - 10°W and 35°N - 45°N, 70°W - 

10°W), computing daily anomalies from the 1981-2010 climatology, and subtracting northern 

values from southern values.  This generated a time series that, being based on upper-air analyses, 

includes NAO effects related to the large-scale circulation. 

Figure 2 shows 500 hPa geopotential height patterns composited on values of the 

monthly stochastic forcing NNTA(t) tailward of one standard deviation.  The main Atlantic feature 

is a high/low couplet roughly coincident with the domains used to generate the NAO index, 

indicating that NAO-like variability is strongly associated with stochastic forcing in the NTA 

region.  Figure 2 suggests that the NAO in this context is part of a larger wave train extending 

into northern Scandinavia.  It also suggests that the negative phase of NAO dominates the pattern 

somewhat more during positive extremes of NNTA(t) than does the positive phase of NAO during 

negative extremes of NNTA(t). 

It is not just NNTA(t) that provides forcing in equation (4), but rather the entire vector N(t). 

The NAO contribution to N(t) is represented by Rη(t), where R is estimated as follows.  We 

averaged the daily NAO to generate a weekly time series η(t) contemporaneous with OISST. 

Stratifying data by month and regressing each month’s N(t) (equation 3) onto η(t) yielded 

annually periodic regression vectors Rmonth, which relate the NAO to the pattern of SST forcing. 

Three passes of a 3-month boxcar filter revealed that each component of Rmonth contained a 

systematic annual cycle; weekly values Rweek were therefore estimated by linear interpolation. 
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Figure 3 illustrates the annual cycle of Rweek.  The largest sensitivity to the NAO index is 

in the north Atlantic, especially during boreal summer (Fig. 3c).  Even though strongest 

sensitivity is north of our NTA region, which is outlined in red, the linear deterministic dynamics 

redistributes the forcing over time (cf. the integral in equation (4)). In the north tropical and 

subtropical Atlantic, surface winds composited on NAO extremes (not shown) indicate that trade 

winds weaken during the negative phase of the NAO and strengthen during the positive phase, 

directly affecting SSTNTA. We defer to future work the apparent presence of NAO forcing in other 

ocean basins.  The NAO contribution to the unpredictable component of NTA SST can be 

estimated by using Rweekη(t) in equation (4) instead of N(t), with the integral approximated by 

trapezoidal rule. 

5. Evidence of the NAO’s effects on SSTs in the North Tropical Atlantic  

We earlier noted that the autocorrelation functions of weekly SSTANTA and NAO have 

quite different time scales.  The correlations between weekly SSTANTA and LIM hindcasts thereof 

(i.e. based on equation (3) using only the first term on the right-hand side) have more skill than a 

univariate AR1 process such as SSTANTA from 12 through 48 weeks (Fig. 1a).  Because the data 

involved are not necessarily independent, this curve can be considered an upper bound of 

hindcast skill.  We can include the NAO’s contribution to stochastic forcing by adding the 

integral term in equation (3), with N(t) replaced with Rweekη(t), and use the correlations between 

weekly SSTANTA and LIM hindcasts in Fig. 1a as a benchmark to show the fraction of the 

unpredictable component of SSTNTA due to rapidly varying NAO.  The correlations between 

weekly SSTANTA and the LIM hindcasts plus the NAO contribution (Fig. 1b) show that much of 

the unpredictable component can be attributed to the NAO; at a lead of 48 weeks, the correlation 

is increased from the baseline 0.37 to 0.56. 
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The NAO is most active during the boreal winter (DJF) and spring (MAM).  To identify 

how much of the contribution to the integral in equation (3) is attributable to NAO during these 

seasons, Fig. 1b also shows the correlations between SSTANTA and LIM hindcasts augmented by 

two other versions of the integral term: one using contributions from every season except DJF, 

and one using contributions from only boreal summer (JJA) and fall (SON).  The greatest 

augmentation to the correlation between SSTANTA and LIM hindcasts is from forcing during DJF 

and MAM.  However, as shown in Fig. 4, unpredictable SST variability generated during these 

seasons is persisted by the deterministic dynamics and affects the predictability of SSTANTA 

during every season of the year, particularly at long lead times.  Clearly, the disruption of JJA 

and SON predictability is more strongly affected by the NAO in MAM than in DJF. 

5. Conclusions and Discussion  

While the NAO does not account for all of the stochastic forcing of SSTANTA, it does 

account for an impressive amount and, although the NAO is strongest during the boreal winter 

and spring, its convolution with the deterministic dynamics maintains its importance throughout 

the year.  The decorrelation time of the NAO is on the order of one or two weeks, but the NAO’s 

cumulative effect when convolved with the longer-scale deterministic dynamics of tropical SSTs 

is strongly associated with inter-seasonal evolution of tropical SST.  Thus, long timescale 

predictions of SSTANTA require accurate simulation of fast dynamics.  The NAO's importance to 

SSTANTA evolution cannot be discerned through traditional correlation analysis since 

deterministic dynamics redistributes NAO-induced variability during the forecast period.   

Our results also show how forecast skill of SST anomalies obeying a stochastically 

forced linear system can be sensitive to the annual cycle even though forecasts themselves may 

not be. Passage of the "tau-test" (see Penland and Sardeshmukh [1995] and supplement for 



 11 

details) suggests weak, if any, dependence of L (the slow dynamics) on the annual cycle.  

However, since forecast skill is strongly linked to stochastic forcing, skill can be seasonally 

dependent if the variance of stochastic forcing depends on the annual cycle, as is the case with 

NAO. 

Our study provides an estimate of how a perfect forecast of the NAO might improve SST 

forecasts.  Statistical forecasts rely upon correlation, and the short autocorrelation of the NAO 

precludes useful statistical forecasts of that quantity at seasonal leads.  However, the relation 

between NAO and SSTANTA might be exploited by GCMs to the extent allowed by dynamical 

chaos. If fast nonlinear dynamics resolved by GCMs could be predicted accurately enough that 

some of what seasonally averaged SSTs “see” as stochastic forcing could be deterministically 

predicted, the lead times at which forecasts of SSTANTA are skillful might exceed those indicated 

in Fig. 1a. 

This study suggests extensive follow-up work.  Both El Niño and the NAO have 

significant effect on SSTANTA; are they related? What are the roles of other teleconnections, and 

how much of that dynamical interaction is stochastic on seasonal timescales?  For example, 

much of the effect of ENSO on SSTANTA is represented in the deterministic operator L [Penland 

and Matrosova, 1998, 2006], but ENSO is also dynamically related to the Pacific- North 

American pattern (PNA), which itself affects SSTANTA.  We found insignificant correlations 

between PNA and NAO at daily, weekly, and monthly timescales (not shown), so we believe that 

any joint effect of these indices would also be represented in L, but this remains to be proved. 

Can physical mechanisms responsible for the stochastic forcing be identified through further data 

analysis, as in Frankignoul et al. [1998]?  We expect the multi-scale statistical analysis 
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introduced here, particularly when combined with other dynamically based statistical methods, to 

provide a valuable tool for investigating these and other unresolved issues. 

Acknowledgements  All data used in this project were provided by the NOAA-ESRL Physical 

Sciences Division, Boulder, Co., from their Web site at http://www.esrl.noaa.gov/psd/.  The 

authors acknowledge very useful correspondence with M. M. Mansour, discussions with P.D. 

Sardeshmukh and comments by two reviewers on a previous version of this article.  We are also 

grateful for support from NOAA's Climate Program Office.  



 13 

References 

Benedict, J.L., S. Lee, and S.B. Feldstein (2004), Synoptic view of the North Atlantic 

Oscillation, J. Atmos. Sci., 61(2), 121-144. 

Czaja, A., P. van der Vaart, and J. Marshall (2002), A diagnostic study of the role of remote 

forcing in tropical Atlantic variability, J. Climate, 15(22), 3280-3290. 

Elsner, J.B., S.E. Strazzo, T.H. Jagger, T. LaRow, and M. Zhao (2013), Sensitivity of limiting 

hurricane intensity to SST in the Atlantic from observations and GCMs. J. Climate, 26(16), 

5949-5957.  

Enfield, D.B. (1996), Relationships of inter-American rainfall to tropical Pacific and Atlantic 

variability.  Geophys. Res. Lett., 23(23), 3305-3308. 

Enfield, D. B., and D. A. Mayer (1997), Tropical Atlantic sea surface temperature variability and 

its relation to El Niño-Southern Oscillation, J. Geophys. Res., 102(C1), 929-945. 

Feldstein, S. B. (2000), The timescale, power spectra, and climate noise properties of 

teleconnection patterns. J. Climate, 13(24), 4430–4440.  

Feldstein, S.B. (2007), The dynamics of the North Atlantic Oscillation during the summer season. 

Quart. J. Roy. Meteorol. Soc., 133(627), 1509-1518. 

Frankignoul, C., and K. Hasselmann (1977), Stochastic climate models, Part II Application to 

sea-surface temperature anomalies and thermocline variability, Tellus, 29(4), 289-305. 



 14 

Frankignoul, C., A. Czaja, and B. L'Heveder (1998), Air-sea feedback in the North Atlantic and 

surface boundary conditions for ocean models. J. Climate, 11(9), 2310-2324. 

Franzke, C., S. Lee, and S. B. Feldstein (2004), Is the North Atlantic Oscillation a breaking 

wave? J. Atmos. Sci., 61(2), 145-160. 

Fuenzalida, H., and B. Rosenblüth (1986), Distortion effects of the anomaly method of removing 

seasonal or diurnal variations from climatological time series, J. Climate Appl. Meteorol., 25(6), 

728-731.  doi 10.1175/1520-0450(1986)025<0728:DEOTAM>2.0.CO;2 

García, A.L., M.M Mansour, G.C. Lie,and E. Clementi (1987), Numerical integration of the 

fluctuating hydrodynamic equations, J. Stat. Phys., 47(1/2), 209-228. 

Gardiner, C.W. (1984), Handbook of Stochastic Methods.  Springer-Verlag, Berlin. 

Goldenberg, S.B., and L.J. Shapiro (1996), Physical mechanisms for the association of El Niño 

and West African rainfall with Atlantic major Hurricane activity, J. Climate, 9(6), 1169-1187. 

Hasselmann, K. (1976), Stochastic climate models Part I. Theory, Tellus, 28(6), 473-485. 

Hastenrath, S. (1984), Interannual variability and annual cycle: Mechanisms of circulation and 

climate in the tropical Atlantic sector. Mon. Wea. Rev., 112(6), 1097-1117. 

Khasminskii, R. Z. (1966), A limit theorem for solutions of differential equations with random 

right-hand sides. Theory Prob. Applications, 11, 390-406. 

Kloeden, P., and E. Platen (1992), Numerical Solution of Stochastic Differential Equations. 

Springer Verlag, Berlin, 632pp. 



 15 

Kushnir, Y., W.A. Robinson, P. Chang, A.W. Robertson (2006) The physical basis for predicting 

Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19(23), 5943-5970. 

Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura (2010), Mechanisms of tropical 

Atlantic SST influence on North American precipitation variability. J. Climate, 23(21), 5610-

5628. 

Lee, S.-K., D.B. Enfield, and C. Wang (2008), Why do some El Niños have no impact on 

tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, doi:10.1029/2008GL034734. 

Nobre, P., and J. Shukla (1996) Variations of sea surface temperature, wind stress and rainfall 

over the tropical Atlantic and South America. J. Climate, 9(10), 2464–2479. 

Papanicolaou, G.C., and W. Kohler (1974), Asymptotic theory of mixing stochastic ordinary 

differential equations.  Commun. Pure Appl. Math., 27, 641-668. 

Penland, C., and L. Matrosova (1998), Prediction of tropical Atlantic sea surface temperatures 

using linear inverse modeling, J. Climate, 11(3), 483-496. 

Penland, C., and L. Matrosova (2006), Studies of El Nino and interdecadal variability in tropical 

sea surface temperatures using a nonnormal filter. J. Climate, 19, 5796-5815. 

Penland, C., and P. D. Sardeshmukh (1995), The optimal growth of tropical sea-surface 

temperature anomalies, J. Climate, 8(8), 1999-2024. 

Polo, I., B. Rodríguez-Fonseca, T. Losada, J. García-Serrano, (2008), Tropical Atlantic 

variability modes (1979–2002). Part I: Time-evolving SST modes related to West African 

rainfall. J. Climate, 21(24), 6457-6475. 



 16 

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang (2002), An improved 

in situ and satellite SST analysis for climate, J. Climate, 15, 1609-1625. 

Saha, S., and CoAuthors (2006), The NCEP climate forecast system, J. Climate, 19(15), 3483-

3517. 

Saravanan, R., and P. Chang (2000), Interaction between tropical Atlantic variability and El 

Niño–Southern Oscillation, J. Climate, 13(13), 2177-2194. 

Smirnov, D., and D.J. Vimont (2013), Extratropical forcing of tropical Atlantic variability during 

boreal summer and fall, J. Climate, 25(6), 2056-2076. 

Smith, T.M., R.W. Reynolds, T.C. Peterson, J. Lawrimore (2008), Improvements to NOAA’s 

historical merged land–ocean surface temperature analysis (1880–2006), J. Climate, 21(10), 

2283-2296. 

Stockdale, T.N., M. A. Balmaseda, and A. Vidard (2006), Tropical Atlantic SST prediction with 

coupled ocean-atmosphere GCMs. J. Climate, 19(23), 6047-6061. 

Wu, L., and A. Liu (2002), Is tropical Atlantic variability driven by the North Atlantic 

Oscillation? Geophys. Res. Lett., 29(13), 1653, DOI: 10.1029/2002GL014939 

 

 



 17 

 

Figure 1. (a) Autocorrelation of the weekly NAO (squares) and SSTANTA (stars).  Also shown 

(thick line) is the correlation between observations and LIM hindcasts of weekly SSTANTA at 12, 

24, 36, and 48 weeks. (b) The thick line repeats the correlation between observations and LIM 

hindcasts of weekly SSTANTA.  The other curves show the correlation between observed weekly 

SSTANTA and LIM hindcasts thereof modified to include contribution to SSTANTA from the NAO 

(cf. equation (3)).  Filled diamonds: including NAO during the entire year.  Filled squares: 

neglecting NAO contributions from boreal winter. Open squares with crosses: neglecting NAO 

contributions from boreal winter and spring. 
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Figure 2. Composite daily 500mb heights corresponding to (a) positive (N=196) and (b) negative 

(N=185) extremes of empirically estimated stochastic forcing of SSTANTA.  Extremes are defined 

as excursions beyond plus/minus one standard deviation. 
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Figure 3. Seasonal variation of the regression vector R. (a) January, (b) April, (c) July, (d) 

October. See text for details.  The NTA region is outlined in red. 
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Figure 4.  As in Figure 1b, but stratified by verification season.  (a) DJF, (b) MAM, (c) JJA, (d) 

SON. 
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Supplemental Material 

1. Constructing the linear operator 

We used the coarse-grained SST anomalies X to estimate the linear operator L.  Defining 

C(τ) as the autocorrelation matrix of X at lag τ, then 

 C(τ) = exp(Lτ) C(0). (S1) 

Hence, by choosing a lag τo and estimating C(τo) and C(0) from data, we estimate L from the 

eigenstructure of C(τ)C-1(0) [Penland and Sardeshmukh, 1995; PS95 hereafter].  Estimates of L 

that are independent of τo imply linear dynamics for X, though Nyquist modes, short data records 

and observational errors may prevent passage of this "tau-test" even when equation (2) is valid 

[PS95].  The tau-test also fails if L is nonstationary, e.g., if it depends on the annual cycle. LIM 

forecasts of X [PS95] have shown that linear models of tropical SST obey the tau test reasonably 

well.  

LIM forecasts of tropical SSTA at lead τ  are obtained by applying a "Green function" 

matrix G(τ) to an initial condition X(t0), where 

 G(τ) = exp(Lτ). (S2) 

Simple LIM forecasts of seasonal SST in the tropical strip are competitive with those made by 

operational forecasting systems [Saha et al., 2006], and skillful LIM forecasts of SSTANTA have 

been available for over a decade [Penland and Matrosova, 1998].  Three-month running mean 

SSTs have been used to estimate L for real-time forecasts (rather than straight seasonal coarse-

graining) to minimize computational round-off errors.  Another issue is one of smoothness: LIM 



 22 

attempts to identify multivariate tendencies in the coarse-grained data, and a running mean 

facilitates this. 

The matrix L was estimated to conform with forecast guidelines furnished by the 

National Oceanic and Atmospheric Administration (NOAA).  The 1981 - 2010 climatology was 

subtracted from NOAA Extended Reconstructed SST (ERSST) V3b monthly data [Smith et al., 

2008], 1950 to 2000, to form anomalies [Fuenzalida and Rosenblüth, 1986].  Anomalies in the 

tropical strip between 30°N and 30°S were consolidated onto a 4o x 10° latitude by longitude 

grid, subjected to a three-month running mean, and projected onto the leading 20 Empirical 

Orthogonal Functions (EOFs), explaining 89% of the variance.  The two leading EOFs, together 

explaining 58% of the variance, each bear some resemblance to a mature El Niño pattern in the 

eastern Pacific, with the second EOF more closely confined to the equator.  The principal 

component (PC) time series of these two EOFs exhibit highly significant trends, though in 

opposite senses; the linear trend in each of these PCs was removed.  The other PCs do not show 

strongly significant trends.  Using these 20 time series as a basis, the linear operator L was 

estimated using equation (S1). 

Resulting SST forecasts, including those in the NTA region (c.f. red box in Fig. C), are 

found at http://www.esrl.noaa.gov/psd/forecasts/sstlim/Seas.html. If the prediction model were 

perfect, stochastic forcing, which does not enter into the forecast itself, would dominate the 

forecast error (equation (3)), with no difference in forecast error statistics made with dependent 

and independent data. 

2. Comparing ERSST and OISST 

OISST comes in both monthly and weekly versions, but only from 1981 to present.  This 

duration is too short to give accurate estimations of the coarse-grained dynamics represented by 
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L, but OISST is an adequate approximation of ERSST for estimating the rapidly varying 

dynamics N(t).  To show this, we prepared anomalies of monthly OISST as we did with ERSST, 

projecting them onto ERSST EOFs and removing the same linear trends.  The resulting time 

series were statistically indistinguishable from the ERSST time series during the period of 

overlap, i.e., 1990-2012. 

3. Estimating forcing 

Although the statistics of the stochastic forcing is a product of LIM, the time series of stochastic 

forcing is not.  An estimation of such a time series is the residual of subtracting Lx from a finite 

difference approximation to the derivative in equation (1).  This seems obvious, but there is a 

mathematical subtlety required by the physics: it is required to recall that white noise is only an 

approximation and that the system we consider here is continuous, rather than discrete.  

Recognizing that nature imposes on continuous, possibly discretized, stochastic physical systems 

(i.e., "Stratonovich" systems) mathematical rules that are different for systems that are 

intrinsically discrete [e.g., Gardiner, 1984], we must use a finite difference that yields a nonzero 

contemporaneous correlation between X and the additive white noise forcing ξ  in equation (2).  

In fact, <XξT> = Q/2, where Q is the covariance matrix of the noise: <ξ  ξT >dt = Q [García et al., 

1987].  It is easily shown using the fluctuation-dissipation theorem of the second kind that a 

central difference approximation to this derivative provides this relation in the limit that the time 

step goes to zero.  Since a monthly time step, particularly representing data subjected to a three-

month running mean, cannot remotely satisfy the approximation of small time step, we employ 

weekly data to estimate the stochastic forcing as in equation (3). 


